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CHAPTER 1 

INTRODUCTION 

There has long been an interest in understanding the mechanisms driving sexual 

differentiation in humans.  Ethical considerations prevent the scientific community from 

conducting research with enough experimental control to generate cause and effect relationships.  

As such studying the underpinnings of sexual differentiation in an animal model can broaden our 

understanding of general mechanisms governing sexual differentiation.  One animal model 

uniquely suitable for this task is the zebra finch.  Zebra finches exhibit striking sex differences in 

behavior that are linked to differences in brain morphology.  One of the most striking differences 

is song production.  Male finches sing and females do not and their brains clearly reflect this sex 

difference. A large portion of the zebra finch brain is devoted to learning and producing song.  

Many of these areas are larger in males than in females (Arnold, 1997b).  Zebra finches and 

other songbirds have a long period of song learning that is so far unparalleled in any other 

species except humans, allowing us to study the mechanisms of sexual differentiation from a 

developmental perspective.  Zebra finches also live in complex social groups.  One practical 

benefit is that the zebra finch genome has recently been completely mapped and annotated.  

These benefits, coupled with a burgeoning understanding of zebra finch endocrinology, allow us 

to study sexual differentiation from a behavioral, hormonal and genetic standpoint. 

1.1 The Zebra Finch Song System   

 Male zebra finches produce a stereotypical song that is thought to be solely important for 

attracting a female, since zebra finches are not territorial (Searcy & Yasukawa, 1996). The use of 

temporary and reversible vocal distortion techniques such as the transection of the 

tracheosyringeal nerve (which is the nerve that connects the song production pathway to the 
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syrinx, the vocal apparatus, the transection ofwhich results in low quality song of similar length 

and complexity) and inter-clavicular air sac puncturing (which results in a temporary absence of 

audible song output from the loss of pressure in the air sac surrounding the syrinx), has revealed 

that when given the choice between a control male and a male singing distorted song, the female 

is significantly more likely to choose a male singing unaltered, high quality, song (Tomaszycki 

& Adkins-Regan, 2005).  Females also prefer tutored song (song learned from an adult male, 

preferably the father) over song by males reared without adult males (Lauay, Gerlach, Adkins-

Regan, & Devoogd, 2004).  Thus, song is learned, is highly important for adult courtship and 

pairing behavior, and involves a large portion of the brain. 

1.2 Sex Differences in Brain Morphology 

 Research on song production and learning in zebra finches has focused primarily on areas 

in the telencephalon (Arnold, 1996).  Area X and the lateral part of the magnocellular 

neostriatum (LMAN) are known to be crucial for song acquisition, as lesioning these areas 

during development inhibits song learning in males (Doupe & Solis, 1997).  The HVC (used as 

proper name) and the robust nucleus of the archistriatum (RA) have been identified as areas 

important for song production, specifically the motor aspects of song (Wade, 2001).  HVC has 

projections to RA which in turn innervates the tracheosyringeal nerve via the hypoglossal 

nucleus (nXIIts), providing a direct link between the brain and the syrinx (Wild, 2004). 

Concurrent with their role in singing behavior, there are significant sex differences in the 

size and/or structure of these regions.  The most marked difference is in Area X, which never 

develops in female zebra finches.  HVC and RA are larger in volume in male zebra finches with 

greater cell densities and larger soma sizes (Nottebohm & Arnold, 1976).  The projection from 

HVC to RA is denser in males and XIIts is correspondingly larger in volume (M. E. Gurney, 
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1981).  Unlike other song nuclei, there are no sex differences in LMAN volume in adulthood. 

However, there are differences which are apparent at the cellular level. The somas in female 

finches show a reduction between days 35 and 60 post-hatching, resulting in a sexual 

differentiation of cell size (Nixdorf-Bergweiler, 2001). These differences in the song system and 

in singing behavior have been thought to be regulated by hormone exposure early in 

development.   

1.3 Organizational effects of hormones on sexual differentiation 

 In all mammals females posses the chromosome pair XX, while males possess XY.  The 

SRY gene on the Y chromosome causes testes to form in male fetuses, which, in turn, begin to 

produce testosterone which sets of a cascade of events assumed to generate sex differences in 

peripheral morphology, neural morphology and behavior. The understanding that steroid 

hormones have a profound effect on the sexual differentiation of brain and physiology is decades 

old.  In 1959, Phoenix and colleagues, proposed the ―organizational‖ and ―activational‖ 

mechanisms of hormone activation.  They proposed that ―organizational‖ effects of sex 

hormones differentially organize neural pathways in permanent ways during critical periods 

early in development.  ―Activational‖ effects occur much later and emergent behaviors or 

physical features are dependent on earlier organization (e.g. male facial hair or female menarche 

in humans). Cause and effect relationships for sexual differentiation in humans are difficult to 

determine due to ethical reasons, but correlational studies involving individuals with sex 

chromosome disorders shed some insight into hormone and behavior relationships in humans.  

The best example is complete androgen insensitivity syndrome (CAIS).  Due to multiple 

mutations in the androgen receptor gene, it is not possible for the testosterone secreted by the 

testes to act at their receptors and thus effect development (Hughes & Deeb, 2006). A genetic 
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male develops female neural morphology and external genitalia. They are frequently assumed to 

be female at birth until following breast development, menarche does not occur (Griffen, 1992). 

This genetic disorder not only highlights the importance of steroid hormones in normal 

development, but also the importance a properly functioning X chromosome (Lubahn et al., 

1988).  

 Other mammals have provided excellent experimental models of sex differences.  

Female rats  have been shown to take significantly longer  in spatial navigation tasks due to 

smaller hippocampal volumes in comparison to males, and treatment with neonatal testosterone 

in females eliminated this difference (Roof & Havens, 1992).  There is also evidence of sex-

typical mating behavior in rats (Seward, 1945), and this behavior can be masculinized by 

neonatal hormonal manipulations. 

Supporting the organizational hypothesis, there are concurrent brain regions that are also 

affected by steroid hormones in rats. These include: the sexually dimorphic nucleus of the 

preoptic area of the hypothalamus (Gorski, 1978) and the hippocampus, which has been 

implicated in spatial navigation (Jacobs, Gaulin, Sherry, & Hoffman, 1990).  Non-human 

primates have also been studied extensively.  In rhesus macaques, androgen secretion begins at 

D40 prenatally and continues until 3 months postnatally (Mann et al., 1984).  Contrary to the 

rodent literature, neonatal manipulation of androgens in rhesus monkeys affect mother-infant 

relationships in small ways (Wallen, Maestripieri, & Mann, 1995).  Castration (Goy, 1978) or 

neonatal suppression of gonadatropic hormone did not have any effects on stereotypically 

sexually dimorphic behaviors in male rhesus monkeys, suggesting that the masculinization 

process occurs during the prenatal period, and does not continue postnatally.   
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Support for the organization of morphology and behavior during the prenatal phase 

comes first from the substantial modification of genitalia in prenatally-treated females (Wallen, 

1996). Furthermore, we know that sexual differentiation is strongly dependent on the timing of 

administration, which, for genital morphology, occurs during the second trimester (Wallen, 

1996).  

However, prenatal androgens may not be the entire story in rhesus macaques. Changes in 

sexually dimorphic behavior can also be seen in the rhesus monkey in the absence of androgen 

manipulation. Restricted rearing contexts such as peer groups (reared only with same-aged 

individuals, without adults, including mothers) induced changes in stereotyped male behavior 

like rough and tumble play, such that there was an increased frequency of rough and tumble play 

in the peer-group reared males in comparison to normally (socially) reared animals (Wallen, 

1996).  Changes in sexually dimorphic behavior without concurrent changes sex hormones 

suggest mechanisms of sexual differentiation that exist independently of circulating hormones, 

such as changes in social environments. Administration of prenatal androgens to females 

masculinized behavior regardless of rearing conditions, but particular behaviors were dependent 

on hormones administered at specific periods during gestation (the second or third trimester) and 

could occur in the absence of genital masculinization, which happens during the second trimester 

(Goy, Bercovitch, & McBrair, 1988). Furthermore, masculinization was not complete, 

suggesting that higher doses of androgens are needed to masculinize behavior relative to genital 

morphology, or that other mechanisms are important.  

1.4 The organizational hypothesis: does testosterone always masculinize morphology and 

behavior?  
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  One assumes that behavior is masculinized by androgens, but the ―aromatization 

hypothesis‖ (Feder, 1981; MacLusky & Naftolin, 1981) suggests otherwise. Estradiol is formed 

by testosterone via the aromatase enzyme, which then masculinizes the individual.  Studies of 

rodents have shown that estrogens play a large role in the normal development of males. Thus, 

the theory suggests that masculinization is paradoxically occurring in response to the presence of 

the ―female‖ hormone estradiol.  Evidence in female rats and mice exposed to high amounts of 

exogenous estradiol lends support to this theory (Christensen & Gorski, 1978).  In the normal 

course of development alpha-feto protein binds to estradiol in females and prevents it from 

crossing the cell membrane (MacLusky & Naftolin, 1981).  However, exposure to exogenous 

estradiol overwhelms this process permitting some estradiol to cross, thus causing 

masculinization of sexual behavior in the female animal (E. Adkins-Regan & Ascenzi, 1990; 

Bakker et al., 2006). 

Due to the popularity of the aromatization hypothesis in rodents, many studies in zebra 

finches have focused strongly on estrogen-driven development to explain the masculinization of 

the song system.  Indeed, a similar phenomenon has been observed, to some extent, in female 

zebra finches. Early post hatch exposure to estradiol (E2) has been shown to masculinize singing 

behavior of the female finch (Arnold, 1997a).  When females are implanted with both 

testosterone (T) and E2 on the day of hatching, volumes of HVC and RA increased as did soma 

size in RA, HVC and LMAN by day 60.   E2 was found to be more effective in masculinization 

than T, consistent with the aromatization hypothesis.  However, these regions were still 

consistently smaller in females than males, even when coupled with T treatments in 

adulthood(Adkins-Regan, Mansukhani, Seiwert, & Thompson, 1994). 



www.manaraa.com

7 

 

Other research on female zebra finches does not support the aromatization hypothesis. 

Treatment with tamoxifen (an anti-estrogen) also has masculinizing effects: increasing cell size 

in LMAN and HVC in both males and females (Mathews & Arnold, 1990).  Furthermore, these 

same treatments in the first 25 days induced development of area X in females (Mathews & 

Arnold, 1991).  Also puzzling is the fact that inhibiting aromatase activity also causes 

masculinization. Pre-hatch treatment with fadrozole (an aromatase inhibiter) caused the 

formation of  an ovitestis on the left side of the female where the ovary normally develops, and a 

testis on the right side where there is normally no gonadal tissue (Wade & Arnold, 1994).  In 

adulthood the testis was functional and produced sperm.  Brain morphology was also similar to 

males (Gong, Freking, Wingfield, Schlinger, & Arnold, 1999).   The results in the female zebra 

finch, though paradoxical, strongly suggest the role of sex hormones steroids in the 

masculinization of the song system. 

Although data from female zebra finches partially supports the aromatization hypothesis, 

data from male finches undermines the theory that sex steroids regulate sex differences in zebra 

finch brain and behavior. Castration in male finches eliminates copulatory behavior and reduces 

courtship behavior, but does not eliminate song (Harding, Sheridan, & Walters, 1983).  

Additionally, blocking E2 in multiple ways and at multiple ages fails to prevent masculinization 

in the male finch (Grisham & Arnold, 1995).    Inhibiting aromatase activity with vorozole (a 

competitive inhibitor of the aromatase enzyme) decreased, but did not eliminate, song in males, 

nor did it alter brain morphology (Balthazart, Absil, Fiasse, & Ball, 1995).  If E2 were necessary 

for masculinizing the song system then it makes sense that treatment with anti-estrogens should 

have had a demasculinizing effect. Pre-hatch treatments in males have likewise yielded 

conflicting results.  Pre-hatch treatment with fadrozole (and aromatase inhibiter) despite the 
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dramatic results in females, showed no effect on males (Wade & Arnold, 1996).  In fact, pre-

hatch treatment with fadrozole paradoxically hyper-masculinized singing in adult males (Wade 

& Arnold, 1996).    

Thus, various treatments which alter the exposure of estradiol in females have yielded 

partial masculinization; however there is no treatment has been found that will reliably 

demasculinize the male finch. If sex steroids were the whole story behind sexual differentiation 

of the song system, this would not be the case.   Similarly we would expect there to be sexually 

dimorphic expression of estrogen receptors (ER) during relevant developmental stages, however, 

ER is similar in male and female finches as late as P20.  These results strongly suggest another 

mechanism underlying the development of masculine behavior and morphology in zebra finches. 

1.5 Sex Steroids in the Zebra finch song system 

Given the focus of past literature on the aromatization hypothesis, it is interesting to note 

that, compared to other songbirds, the zebra finch has relatively few aromatase receptors (ARO) 

in song nuclei (Metzdorf, Gahr, & Fusani, 1999).  However, the highest level of AROs exist in 

HVC (Saldanha et al., 2000).  LMAN seems to be other only other area which expresses ARO 

and only at moderate levels compared to HVC (Metzdorf, et al., 1999). 

 In the adult zebra finch, the greatest levels of androgen receptor (AR) expression occurs 

in the HVC and the magnocellular neostriatum (MAN) (K. W. Nordeen, Nordeen, & Arnold, 

1986).  Expression of AR is sexually dimorphic in HVC as early as P12-P20 (Bottjer, Glaessner, 

& Arnold, 1985).  Starting at P15 until P30 the size of HVC increases by almost 3 times in male 

finches (K. W. Nordeen, et al., 1986). Despite assumptions of the masculinizing effects of 

estradiol, estrogen receptors (ER) do not appear until P15 when HVC is already sexually 
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dimorphic (Gahr & Metzdorf, 1999) and thus are not responsible for the early development of 

sexually dimorphic morphology.  

 What role, then, does E2 play in masculinizing the song system if it isn’t responsible for 

initiating the process?  One suggestion is that E2 may be acting during song template formation 

to promote survival and addition of neurons in HVC and MAN (E. J. Nordeen & Nordeen, 

1989).  It has also been suggested that E2 may be acting on HVC by promoting or suppressing 

genes that effect the process of sexual differentiation (Burek, Nordeen, & Nordeen, 1995).  This 

is further supported studies examining the effect of later T administration to females previously 

treated with E2.  Along with increases in HVC, RA and LMAN there is also the appearance of 

Area X with a greater likelihood of song attempts than in females treated only with E2 (Gurney, 

1982). 

1.6 Genetic contributions to sexual differentiation of brain and behavior 

Based on previous evidence described above it would seem steroid hormones are not 

solely responsible for masculinization of the zebra finch.  A rare opportunity to explore this 

hypothesis was presented with the discovery with a completely gynadromorphic zebra finch.  On 

one side of its body the finch was phenotypically male and on the other side female (Agate et al., 

2003).  Sexual differentiation between the male and female hemispheres was identical to that 

observed between normal male and female finches.  In situ hybridization confirmed that 

expression of the Z chromosome was higher on the left side (the male side—males are ZZ, 

females are ZW) than the female side, and W chromosome expression was restricted to the right 

side (Agate, et al., 2003). With both halves of the brain exposed to the same level of circulating 

hormones, a solely hormonal theory of sexual differentiation would expect similar feminization 

or masculinization across both hemispheres.   
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In order to understand the relevance of recent findings implicating genetics in the sexual 

differentiation of the song system, a working knowledge of function of gene dosage 

compensation in the zebra finch is necessary.  In mammals, females express the homozygous 

chromosome pair XX, while males express a heterozygous chromosome pair XY.  Despite 

having two dosages of the X chromosome, males and female show the same levels of X 

activation.  During early development one of the X chromosomes in the somatic cells of female 

mammals becomes inactive (Lyon, 1989). Through X-inactivation the phenomenon, first 

discovered in Drosophila malanogaster (Bridges, 1922a, 1922b) referred to as ―dosage 

compensation‖ occurs (Muller, 1932).  In zebra finches, the homozygous chromosome pair 

belongs to the male (ZZ) with the females having the heterozygous pair (ZW).  Unlike mammals, 

dosage compensation does not seem to be as effective in birds as it is in mammals (Ellegren, 

2002; Itoh et al., 2007).  Across bird species Z genes are expressed at consistently higher levels 

in males compared to females.   

 The discovery of the gynadromorphic finch led to a microarray analysis to identify genes 

which are differentially expressed in the telencephalons of male versus females zebra finches 

(Wade, Tang, Peabody, & Tempelman, 2005).   Several genes have found to be sexually 

dimorphic and specific to song nuclei.  Increased expression of ribosomal proteins L17 and L37 

has been found in the song system of juvenile male zebra finches compared to both adult zebra 

finches and juvenile females (Tang & Wade, 2006).  Expression of L7/SPA  an estrogen receptor 

co activator has shown increased expression in juvenile males compared to females using 

western blot analysis (Duncan & Carruth, 2007).  Increased expression of a secretary carrier 

membrane protein (SCAMP1) has been shown in HVC and area X of juvenile male zebra finch 

relative to same aged females (Tang, Peabody, Tomaszycki, & Wade, 2007). The zebra finch 
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genome has been completely sequenced and annotated by the Songbird Neurogenomic Initiative 

(Replogle et al., 2007).   Studies have since identified genes that are both sex-linked and 

expressed more in the male song system versus the female song system at post-hatch day 25, 

which gives us the opportunity to begin to examine the time course of this expression 

(Tomaszycki et al., 2009).  Day 25 is particularly relevant to development of the song system.  

Song-template formation is well underway in both males and females, and sensorimotor 

integration has begun for males (fig 1).  All six genes were shown to map onto portions of the 

zebra finch Z-chromosome.  

There are three genes that are of particular interest, due to their known identities and 

effects on brain and behavior.  Genbank: CK313884 (17-β-hydroxysteroid dehydrogenase type 

IV) converts estradiol into its inactive component estrone.  Genbank: CK310795 

(Methycrontonyl-CoA carboxylase beta chain) may facilitate song learning due to its link with 

NMDA receptors, and therefore, long-term potentiation (Aamodt, Nordeen, & Nordeen, 1996).  

Humans deficient in this gene exhibit motor deficits, learning disabilities, attention-deficit 

disorder and reduction in white matter (Baumgartner et al., 2004).  Genbank: DV946640 (sorting 

nexin 2) was shown to be differentially expressed in Area X.   Deletion of sorting nexin 1 and 2 

has lethal consequences in developing mice (Griffin, Trejo, & Magnuson, 2005). Sorting Nexin 2 

(SNX2) may be related to maintaining neural circuitry essential for learning in human males 

(Small et al., 2005), as well as promoting the survival and incorporation of new cells in area X 

and HVC (Tomaszycki et al., 2009).   This research suggests that genes on the Z chromosome 

may play a role in the masculinization of the song system.  

 In light of data showing conflicting results with estradiol treatment, a possibility exists 

that exposure to exogenous estradiol may, in part, compensate for the reduced gene expression in 
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females. The present study focused primarily on the expression of CK313884 in HVC in male 

and female zebra finches.  CK313884 codes for 17 beta hydroxysteroid dehydrogenase type IV 

(17BHSD4) which converts into its inactive metabolites.  17-β estradiol has previously been 

implicated in differentiation of the song system in zebra finches (M. E. Gurney & Konishi, 

1980).  It is reasonable to assume that 17 beta hydroxysteroid dehydrogenase type 4 would be 

expressed in the same location as ER responding to 17 β estradiol as its role is to break down 

estradiol into its inactive component estrone.   Examining distribution of estrogen receptors (ER) 

in the song system, it was found that ERs were mainly localized to HVC starting at post hatch 

day 15, but in low levels across development (Gahr, 1996).  To examine the relationship of 

hormones and genes it seems prudent to start with a familiar paradigm.  We know that estradiol 

when administered to the developing female finch masculinizes song system morphology. This 

study asks two primary questions: First, how does estrogen treatment affect expression 

CK313884 mRNA expression? Secondly, is this gene located in the same cells as androgen 

receptors? This co-localization might play a part in the masculinization process, since estrogen 

receptors are low in the song system (Gahr & Metzdorf, 1999).   
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Chapter 2 

Methods 

2.1 Animals and Tissues 

All tissues for all experiments were collected from animals living in large colonies cages 

containing multiple males and females, as well as their offspring. Birds were implanted with 

either a 1mm pellet containing 50µg of 17β-estradiol or a blank pellet on the third day post 

hatching. At post hatch day 25, the brains were collected by rapid decapitation, frozen in cold 

methyl-butane and stored at -80°C. Sex was determined by examining the gonads post-mortem 

under a dissecting microscope. The presence of the pellet and sex of the animal was confirmed in 

all subjects.  Subjects who did not have visible pellets were not included in the study.  

2.2 Histology 

Brains were sectioned coronally (20µm) and mounted onto SuperFrost Plus slides (Fisher 

Scientific, Hampton, NH).  Six series of sections representing the whole brain were collected and 

store at -80°C with dessicant. The final sample included 6 animals in each group (6 females and 

6 males treated with estradiol; 6 females and 6 males implanted with a blank pellet). Thus, a total 

of 24 animals were included in the study. 

2.3 Probe Preparation  

Colonies used to generate probes were obtained from glycerol stocks, and plasma DNA was 

isolated and confirmed through sequencing.  To obtain enough clones for in situ hybridization, a 

Qiagen Maxi Prep kit (Valencia, CA) was used, and the templates were then linearized using the 

restriction enzymes Xhol (T3) and NotI (T7).  In all cases, T3 was the anti-sense strand and T7 

was the sense strand.  

2.4 Double-label Fluorescence In Situ Hybridization 



www.manaraa.com

14 

 

In situ hybridization was adapted from (Pinaud et al., 2004).  Briefly, slides were brought to 

room temperature, fixed in 3% paraformaldehyde and rinsed in phosphate buffered saline (PBS).  

Slides were incubated for 10 minutes in 0.1M triethanolamine hydrochloride with 0.25% acetic 

anhydrate then rinsed three times in 0.2M sodium phosphate, sodium chloride and EDTA 

(SSPE), dehydrated in ethanols and air dried for 10 minutes.   Slides were hybridized overnight 

at 55°C 200µl of hybridization buffer, which included 12µl of probe. 

Posthybridization was accomplished as follows: parafilm coverslips were removed by 

rinsing in 2X SSPE, than washed in 2X SSPE at room temperature for 30 minutes on shaker. 

This was followed by a wash in 2X SSPE/50% formamide for 1 hour and 65°C, then washed two 

times in 0.1X SSPE for 30 min at 65°C.  Anti-DIG-FITC signal detection was accomplished by 

incubating slides in 0.3% hydrogen peroxide in TNT buffer for 10 minutes followed by rinsing 

slides in TNT buffer for 5minutes on shaker 3 times.  Slides were then washed in TNB buffer 

(TNT buffer with 2mg/BSA) for 30 minutes, then incubated  in TNB buffer containing Anti-

DIG-POD antibody (1:100; 10 μg/ml, Roche Diagnostics, Indianapolis, IN) for 2 hours, followed 

by further washes. This was followed by an incubation for 30 minutes in a 1:100 tyramide-

conjugated fluorophore in manufacturer’s buffer (Alexa 594, Molecular Probes, Carlsbad, CA). 

Slides were then incubated in 0.3% Hydrogen peroxide in TNT buffer for 10 minutes, then 

washed for 5 minutes in TNT buffer.  For Biotin detection, slides were incubated for one hour in 

TNT buffer containing Anti-Biotin antibody (1:500; 10µg/ml).  After a final series of washes, the 

slides were coverslipped with Slow Fade (Molecular Probes, Carlsbad, CA), dried in a light 

proof box overnight, and the edges were sealed with clear nail polish the following day.  

2.5 Analysis 
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 Images were analyzed using a Nikon (Eclipse 80i) microscope with Nikon Elements (AR 

3.0) software.  Each brain area of interest was first located in adjacent sections stained with 

thionin using brightfield microscopy (fig 2).   Observers were blind to sex and treatment 

condition.  Cells were counted in an area that was 2560 x 1960µm
2
.   Cells were counted in 3 

slices and both hemispheres per animal for each area.  For each section, three separate images 

were analyzed, FITC illuminating cells expressing CK313884, TRITC illuminating cells 

expressing AR and a merged image showing the co-localization of CK313884 and AR in each 

area.  The average number of cells per area was analyzed using PASW (version 18.0, 

Chicago,Il).  We first ran an ANOVA to confirm sex differences in untreated animals. We then 

ran a Multivariate Analysis of Variance (MANOVA) was run to examine the effects of sex and 

estradiol treatment.   To determine the degree of co-localization we examined the proportion of 

merged cell to cells expressing AR.  A Mann-Whitney U-test and Kruskal-Wallis test was run on 

the calculated percentages to examine any sex or treatment differences in the degree of co-

localization. 
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Chapter 3 

Results 

A One-way Analysis of Variance (ANOVA) confirmed previously established sexually 

dimorphic expression of CK313884 and AR in area HVC.  Untreated male zebra finches had 

significantly more cells than untreated females as expected as was indicated by both cells 

expressing CK313884 (F(1, 10)=17.54, p<.01) and AR (F(1,10)=8.94, p<.05), (fig,3c).  

Expression of AR and CK313884 did not differ in LMAN (F(1,10)=.867, p=.374); 

(F(1,10)=.001, p=.973) or Area X (F(1,10)=.023, p=.882); (F(1,10)=.029, p=.867).  

We next examined the effects of estradiol treatments on sex differences in gene 

expression. A main effect of treatment was observed in Area X for cells expressing AR (F (1, 10) 

=11.348, p<.01) (fig 4) and the co-localization of AR and CK313884 (F(1,10)=16.293, p<.01). 

No other main effects were significant. 

A significant sex by treatment interaction was found for AR expression in HVC  

(F(1,10)=17.758, p<.001), such that treatment with estradiol increased expression of AR in 

females to levels similar to control males but decreased expression in males to levels similar to 

control females (fig 3a).  Furthermore, there was a significant sex X treatment interaction for 

CK313884 expression (fig 3b), such that treatment with estradiol increased the expression of 

CK313884 in females but decreased expression in treated males (F(1,10)=7.213, p<.05); co-

localization (F(1,10)= 11.319, p<.01) . No significant interactions were found in either LMAN or 

Area X 

To examine whether or not sex affects the degree of co-localization in control animals, a 

Mann-Whitney U was run comparing the percent of co-localization for each area.   Only Area X 

showed a significant difference with control males having a higher percent of cells expressing 
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both AR and CK313884 (95.5%) compared to control females (81.2%),  (p<.05).  In both HVC 

and Area X a Kruskal-Wallis test showed treatment with estradiol trended towards an effect in 

female animals.  Co-localization in HVC showed a decreased from 88% in control animals to 

81.2%   in females treated with estradiol (p=.072).  In Area X co-localization increased from 

81.2% in control females to 92.1% in females treated with estradiol (p=.072) (fig 6). 

A one-way ANOVA was run to make multiple comparisons there was a significant main 

effect for co-localization in HVC (F(3)=3.109, p<.05) and Area X (F(3)=4.121, p<.05). Post-hoc 

analyses LSD revealed a treated females (M=.812, SD= .091) showed significantly less co-

localization than untreated males in HVC (M=.914, SD= .079) indicating treatment with 

estradiol did not successfully increase co-localization in females zebra finches (fig 6). In Area X 

untreated males (M=.955, SD=.05) showed significantly higher co-localization than untreated 

females (M=.822, SD=.089) (fig 6).  This difference disappeared with treatment, as estradiol 

treatment significantly increased co-localization in females (M=.921, SD .091) (fig 6).  
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Chapter 4 

Discussion 

This study successfully replicated the work done by Tomaszycki et al. (2009) confirming 

sexually dimorphic expression of the Z-linked gene CK313884 in the HVC of male and female 

zebra finches. Increased expression of CK313884 during development in HVC of males 

compared to females is consistent with the hypothesis that this gene is involved in the 

masculinization process.  This supports the idea that CK313884 is involved in masculinization of 

song nuclei morphology and may be related to the early phases of song learning (template 

formation).  This was successfully accomplished by employing a double label fluorescence in 

situ hybridization protocol (FISH) (fig 5).  The use of FISH provides many benefits over older 

radio-labeling techniques.  The most notable of which are safety, more consistent probe 

specificity and shorter exposure times (Levsky & Singer, 2003). 

HVC 

We hypothesized that estradiol would increase CK313884 mRNA expression in females.   

Gene CK313884 codes for 17 beta-hydroxysteriod dehydrogenase type 4 (17BHSD4).  

17BHSD4 converts estradiol into a less active component estrone, for which estrogen receptors 

have a lower affinity (de Launoit & Adamski, 1999). The presence of 17HSD4 in the zebra finch 

telencephalon helps confirm the presence of estradiol, perhaps from regions near HVC.  Though 

treatment with estradiol significantly increased both the expression of CK313884 and AR in 

females, treatment with estradiol significantly decreased the same expression in male zebra 

finches.  Estradiol treatment had a much stronger impact on AR expression than expression of 

CK313884 (fig 4).   That 17BHSD4 mRNA expression is elevated at day 25 and exists in greater 

quantity in the male finch suggests a potential cytotoxic effect of estradiol on HVC during 
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development. Since 17HSD4 converts E2 into estrone, it suggests that the presence of this gene 

may be slowing down the effects of estradiol to protect HVC from excitotoxicity.   

LMAN 

LMAN showed no sex differences CK313884 either before or after estradiol treatment.  

This confirms previous findings that, though, there is global labeling of CK313884 in the zebra 

finch telencephalon, sex differences in gene expression can be localized to specific areas 

(Tomaszycki, et. al, 2009) (fig 3).   Surprisingly, LMAN did not show sex differences in AR 

mRNA expression.  Sex differences in AR expression have previously been reported in MAN 

(K. W. Nordeen, et al., 1986) (fig 3).  The lack of sex differences in LMAN may suggest that sex 

differences in the numbers of androgen receptors in MAN are isolated to the medial 

magnocellular neostriatum (mMan).  

Area X 

Sex differences were not found in control animals in Area X which confirms previously 

reported findings (Tomaszycki, et al., 2009).  These differences are likely due to the absence of 

Area X in female finches and not absence of AR per se.  Treatment with estradiol had no effect 

of expression of CK313884 in either males or females. However, a dramatic down regulation of 

AR mRNA expression was seen in both treated males and females compared to control animals. 

The increase in co-localization for treated females in this area is likely an artifact of this down 

regulation.  This again lends support to the finding in HVC which suggests that estradiol may 

have a cytotoxic effect on AR (fig 5).   

Summary 

That the phenotypic expression of CK313884 can be changed by developmental exposure 

to estradiol suggests an epigenetic mechanism underlying the sexual differentiation of the song 
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system.  However, there may be a limit to which exposure to exogenous estradiol post-hatching 

can further masculinize a male, as treatment may have overrun the ability of 17HSD4 to protect 

the song nuclei from the cytotoxic effects of estradiol. 

 We also predicted that this gene would be located in the same cells as androgen 

receptors. This co-localization might play a part in the masculinization process, since estrogen 

receptors are low in the song system (Gahr & Metzdorf, 1999).    

The use of the double labeling FISH protocol allowed us to show the co-localization of 

CK313884 and AR in HVC.   Co-localization was slightly higher in male controls than in female 

controls however, this difference was not significant.  Though treatment with estradiol 

significantly increased the expression of CK313884 and AR in females, the degree of co-

localization was dramatically reduced.  These results show that aromatization may have some 

role, since the AR expression suggests the presence of androgens and the 17HSD4 expression 

suggests the presence of estradiol, due to its role in converting estradiol into estrone.  Perhaps 

these androgens are being converted into estrogens via the aromatase enzyme, which is present 

in HVC at this time.  These results also suggest a possible explanation for why estradiol only 

partially masculinizes the female zebra finch.  Though estradiol increases the size and number of 

cells in HVC mimicking male morphology, it is not affecting co-localization in the same way. 

This suggests that not only are larger quantities of cells expressing AR and CK313884 necessary 

for masculinization, but this expression needs to occur with a high degree of co-localization for 

complete masculinization.  Together, these results shed light on the relationship between 

hormones, genes and the sexual differentiation of song nuclei. 

 In reviewing studies examining the effects of estradiol on sexual differentiation in the 

zebra finch (see above), it becomes clear that estradiol does play a role in masculinization of the 
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song system based on the effects shown in developing females.  The confusing aspect of these 

findings is the inability to feminize the male finch by reversing the techniques used in females.  

Unfortunately, though this study provides new avenues for answering this question, the exact 

mechanisms by which estradiol is masculinizing the song system are still unknown.  There is the 

possibility that E2 may be setting the stage for sensitivity to AR later in development by 

increasing the number of AR cells in HVC and MAN (Noordeen, Noordeen and Arnold, 1986). 

There is also the possibility that masculinization of the song system is the default developmental 

trajectory activated by genes on the Z chromosome.  Males are ZZ and females are ZW, it’s 

possible that expression of genes on chromosome W in female finches may act to inhibit 

masculine development of the song system (Arnold, 1996), or activate the development of the 

feminine song system.   The female zebra finch may have separate genes that code for their song 

system (Bailey & Wade, 2003), and it may be such genes that should be the focus of a 

demasculinization or feminization study.   

There are many difficulties inherent with doing this type of research.  As is typical when 

examining the role of genes in development it is problematic to focus on one and determine its 

unique role in the system.  There are five other genes that are part of song system development, 

sexually dimorphic and z-linked CK310795 (Methycrotonyl-CoA), CK303566, DV956689, 

CK3038959, CK306803 (Sorting Nexin 2).  Future work researching how these six genes work 

together may provide us with a more complete picture.  Also, we are not yet in a position to 

examine what would happen to the system if we turned certain genes ―on‖ or ―off‖ in 

development, making it more difficult to test cause and effect relationships. 

 Future work should study expression of CK313884 at other developmental time points. 

From the microarray data, CK313884 remains sexually dimorphic from day 1 through adulthood.  
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The current study examined the male and female birds at P25.  By this time finches are well into 

the song learning phase of their development (Bottjer, 2002). The HVC has been sexually 

dimorphic since P15 and cell number and size is continuing to increase in male (K. W. Nordeen, 

et al., 1986).  At this time HVC is forming connections with area X marking the beginning of the 

sensorimotor integration period for male finches (K. W. Nordeen & Nordeen, 1997).  The next 

interesting time point marks the closing of song template formation at P40 (Bottjer, 2002).  

Finally at P60 neural development has just completed and the animal has reached adulthood 

(Clayton, 1997). Following up with CK313884 at these different time points would help to tease 

apart the functions of this gene.  For example is CK313884 expressed in the same quantities at 

P40 and P60 as it is at P25?  If it is involved in sexual differentiation we would expect the 

expression CK313884 to decrease after the closing of the song template P40.   

 Understanding how multiple genes work with development, hormones and each other 

will lend a greater understanding the sexual differentiation of the zebra finch song system. 
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APPENDIX A-FIGURES 

 

Fig 1 

The development of the song system in the zebra finch through adulthood (P60).  Brains for this 

study were collected at P25 (from Tomaszycki et al., 2009). 
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Fig 2 

a) Schematic showing locations of target brain areas in zebra finch. Brightfield  images 

from  thionin stained sections depicting areas b) HVC, c) Area X and d) LMAN at  40x . 
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Fig 3 

Sex by treatment interaction in HVC for CK313884 and androgen receptor mRNA 

expression in developing male and female zebra finches.  A) A significant sex X treatment 

interaction for mRNA expression of AR in HVC. B) A significant sex X treatment interaction for 

cells expressing CK313884 mRNA in HVC. C) A bar graph representing the average number of 

cells expressed for both AR and CK313884 in each treatment condition.  compared to control 

females.  FC=female control; MC= male control; F+E= estradiol treated females; M+C= 

estradiol treated males.   

*p<.05 
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Fig 4 

Effect of Treatment on mRNA expression of CK313884 in Area X Area X.  A) A significant 

treatment interaction for mRNA expression of AR in Area X. B) A bar graph representing the 

average number of cells expressed for both AR and CK313884 in each treatment condition.  

compared to control females.  FC=female control; MC= male control; F+E= estradiol treated 

females; M+C= estradiol treated males.   

*p<.05 
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Fig 5    In situ hybridization using DIG-labeled probes showing cells expressing CK313884 in 

male and female zebra finches, compared to females treated with estradiol, early in development. 

AR: In situ hybridization using Biotin-labeled probes for androgen receptors.  COLOC: co-

localization of CK313884 and androgen receptors. A) HVC, B) Area X, C) LMAN 

A.  HVC 
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B.  Area X 
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C.  LMAN 
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Fig 6:  Co-localization of CK313884 and AR mRNA in HVC and Area X 

In HVC there were no sex differences between control animals in degree of co-localization.   A 

Kruskal-Wallis indicated a decrease in co-localization for female zebra finches after treatment 

with estradiol.  A post-hoc LSD confirmed co-localization for treated females to be significantly 

less than untreated males. Mann-Whitney U test indicates control males show significantly 

higher degrees of co-localization in Area X compared to control females.  Also in Area X a 

Kruskal-Wallis and post-hoc LSD indicate a significant increase in co-localization in females 

after estradiol treatment. 

*p<.05; † p<.08 
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Recent studies in the zebra finch suggest the sexual differentiation of the song system and 

singing behavior may not be solely driven by steroid hormones organizing the brain, and may 

involve direct genetic effects.  In fact, genes and hormones might act together to produce sexual 

differentiation of the brain. To address this idea, animals were implanted with estradiol or a 

blank pellet on the third day post-hatching. At day 25, the brains were collected and a double 

label fluorescence in situ hybridization protocol using biotin and digoxigenin-tagged mRNA 

probes was used to simultaneously label androgen receptor and  17β-Hydroxysteroid  

Dehydrogenase type IV mRNAs. 

  Estradiol increased the number of cells expressing of 17HSB4 in the HVC of the female 

zebra finch, but did not affect co-localization of   17BHSD4 and AR.  In male zebra finches, 

estradiol decreased the number of cells expressing AR and 17BHSD4 in HVC and the number of 

cells expressing AR in Area X.  This pattern suggests a limit to which estradiol will contribute to 

masculinization and exposure to greater amounts results in cytotoxicity.  These results lend 

further evidence to support the hypothesis that genes and hormones act in concert to sexually 

differentiate the song system in the zebra finch.  
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